UNITED NATIONS I DOT
PERFORMANCE CERTIFICATION

PurePak
Technology Corp.
www.purepaktechnology.com

4G PERIODIC RETEST
6×2.6 Liter Plastic Bottle Packaging with (4)
Designs:
\#1) 38-439 Closure \& Shipper Taped Top \&
Bottom Flaps, \#2) 38-439 Closure \& Shipper
Taped Top \& Hot Melt Glued Bottom Flaps, \#3) 45mm Closure \& Shipper Taped Top \& Bottom Flaps \& \#4) 45mm Closure \& Shipper Taped Top \& Hot Melt Glued Bottom Flaps

TEST REPORT \#: 16-CA20178 (REV 1)

4
n
n
4G / Y30.6 / S / **
USA / +CC7198
**Insert the year packaging is manufactured

TESTING PERFORMED FOR:

PUREPAK TECHNOLOGY CORPORATION
324 South Bracken Lane
Suite 3
Chandler, AZ 85224

ATTN: Michael Dodd

TESTING PERFORMED BY:

TEN-E PACKAGING SERVICES, INC.
326 North Corona Avenue
Ontario, CA 91764
Phone: 909-937-1260
Fax: 909-937-1262
Issue Date: September 23, 2016
Revision Date: June 16, 2017

TABLE OF CONTENTS

SECTION I: CERTIFICATION 3
SECTIONS II \& V: PACKAGING DESCRIPTIONS / COMPONENT DRAWINGS 4
COMPONENT INFORMATION 6
SECTION III: TEST PROCEDURES AND RESULTS 9
DROP TESTS Design \#1 9
DROP TESTS Design \#2 10
DROP TESTS Design \#3 11
DROP TESTS Design \#4 12
STACKING \& STACKING STABILITY TESTS Design \#1 13
STACKING \& STACKING STABILITY TESTS
Design \#2 14
STACKING \& STACKING STABILITY TESTS Design \#3 15
STACKING \& STACKING STABILITY TESTS Design \#4 16
PRESSURE DIFFERENTIAL TEST 38-439 Closure 17
PRESSURE DIFFERENTIAL TEST 45mm Closure 18
VIBRATION TEST 19
Design \#2 VIBRATION TEST 20VIBRATION TESTDesign \#3
21VIBRATION TESTDesign \#4
22
COBB WATER ABSORPTION TEST 23
REGULATORY AND INDUSTRY STANDARD REFERENCES 24
SECTION IV: MATHEMATICAL CALCULATIONS 25
SECTION IV: MATHEMATICAL CALCULATIONS 27

NOTES AND COMMENTS

PurePak Technology may use Identification +CC7198 for a 4×2.6 Liter Plastic Bottle Packaging or a 1 x 2.6 Liter Plastic Bottle Packaging provided they meet the requirements of 49 CFR; 178.601 (g)(1) Selective Testing Variation 1 and 49 CFR; 178.601 (g)(4) Selective Testing Variation 4.

REVISION HISTORY

Note for Rev 1: Test Report 16-CA20178 issued on September 23, 2016 has been updated as of June 16,2017 . On page 7 plastic bottle description and capacity were corrected to 2.6 liters under this revision.

SECTION I: CERTIFICATION

Periodic Retest of the PurePak Technology Corporation
 6×2.6 Liter Plastic Bottle Packaging with (4) Designs:

\#1) 38-439 Closure \& Shipper Taped Top \& Bottom Flaps, \#2) 38-439 Closure \& Shipper Taped Top \& Hot Melt Glued Bottom Flaps, \#3) 45mm Closure \& Shipper Taped Top \& Bottom Flaps \& \#4) 45mm Closure \& Shipper Taped Top \& Hot Melt Glued Bottom Flaps
TEN-E Packaging Services, Inc. is a current DOT UN Third-Party Certification Agency under $\S 107.403$ and certifies that the PurePak Technology Corporation packaging referenced above has passed the standards of the DEPARTMENT OF TRANSPORTATION'S TITLE 49 CFR; Performance Oriented Packaging Standards, Section 178. This package is also certified under IMDG, ICAO/IATA Regulations and the UN Recommendations on the Transport of Dangerous Goods. It is the responsibility of the end user to determine authorization for use under these regulations. The use of other packaging methods or components other than those documented in this report may render this certification invalid.

SUMMARY OF PERFORMANCE TESTS					
UN I DOT TEST	CFR REFERENCE	TEST LEVEL	TEST CONTENTS	TEST COMPLETED	TEST RESULTS
Drop	178.603	2.0 m	Methanol/Water Solution	September 21, 2016	PASS
Stacking \#1	178.606	$771.1 \mathrm{Kg}-24$ Hours	Water	September 21, 2016	PASS
Stacking \#2	178.606	771.1 Kg - 24 Hours	Water	September 22, 2016	PASS
Stacking \#3	178.606	$771.1 \mathrm{Kg}-24$ Hours	Water	September 22, 2016	PASS
Stacking \#4	178.606	771.1 Kg - 24 Hours	Water	September 23, 2016	PASS
Pressure	173.27	300 kPa - 30 Minutes	Water	September 23, 2016	PASS
Vibration	178.608	$3.4 \mathrm{~Hz}-1$ Hour	Water	September 21, 2016	PASS
Cobb	178.516	30 Minutes	---	September 19, 2016	PASS
TEST REPORT NUMBER(S):			16-CA20178, 14-7130		
UN MARKING: (CFR 49-178.503)			(U) $\left.\begin{array}{l}\text { 4G } / \text { Y30.6 / S / ** } \\ \text { n } \\ \text { USA } /+C C 7198\end{array}\right)$		
PACKAGING IDENTIFICATION CODE:			4G - Fiberboard Box (178.516)		
PERFORMANCE STANDARD:			Y (Packaging meets Packing Group II and III tests)		
AUTHORIZED GROSS MASS:			30.6 Kg (67.4 Lbs.)		
"S" DESIGNATION:			Denotes Inner Packagings		
YEAR OF MANUFACTURE:			** Insert year the packaging is manufactured		
STATE AUTHORIZING THE MARK			USA		
PACKAGING CERTIFICATION AGENCY:			(+CC) TEN-E Packaging Services, Inc. (Ontario, CA CAA \#2006030021)		
THIRD PARTY PACKAGING IDENTIFICATION:			+CC7198		
PERIODIC RETEST DATE:			September 23, 2018		

ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY THAT THE PACKAGING TESTED IS MERCHANTABLE OR FIT FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. In no event shall TEN-E Packaging Services, Inc. liability exceed the total amount paid by PurePak Technology Corporation for services rendered. In the event of future changes to the above referenced test standards, it is the responsibility of PurePak Technology Corporation to determine whether additional testing or updating of past testing is necessary to verify that the packaging we have tested remains in compliance with those standards.

MANUFACTURER:

PurePak Technology Corporation
324 South Bracken Lane
Suite 3
Chandler, AZ 85224

SECTIONS II \& V: PACKAGING DESCRIPTIONS / COMPONENT DRAWINGS
6×2.6 Liter Plastic Bottles with 38-439 Closure Packaging with Two Case Sealing Mechanisms

For Packagings with an Established Gross Mass:
If the gross mass calculation in this report exceeds the previously established gross mass, the manufacturer may elect to maintain the current gross mass marking (e.g. the gross mass rating of the UN marking on the packaging may be less than the calculated gross mass indicated in this report) or use the newly established gross mass. In no event shall the gross mass marking on the packaging exceed the gross mass to which the packaging was tested.
6×2.6 Liter Plastic Bottles with 45 mm Closure Packaging with Two Case Sealing Mechanisms

For Packagings with an Established Gross Mass:
If the gross mass calculation in this report exceeds the previously established gross mass, the manufacturer may elect to maintain the current gross mass marking (e.g. the gross mass rating of the UN marking on the packaging may be less than the calculated gross mass indicated in this report) or use the newly established gross mass. In no event shall the gross mass marking on the packaging exceed the gross mass to which the packaging was tested.

COMPONENT INFORMATION

SHIPPER (Part \#: 1394833)

Manufacturer: PCA, Phoenix, AZ		
Description:	Regular Slotted Container	
Material/Flute (Inner to Outer):	51 ECT Double Wall Mottled White Corrugated Fiberboard; C/B-Flute	
Basis Weight (Outer to Inner) Lbs.IMSF:		
- Specification	35 / 23 / 35 / 23 / 35	
Tare Weight:	561.0 Grams	
DIMENSIONS		
	Specification Dimensions (Inside)	Measured Dimensions (Outside)
- Length	13-3/4"	14-1/4"
- Width	9"	9-3/4"
- Height	12-3/8"	13-3/4"
Board Caliper (Nominal):	0.267"	
Manufacturer's Joint:	Inside Glued, 1-1/4" Lap	
No Box Manufacturer's Certification:		
Markings (QC Audit):	NONE	

SECTION III: TEST PROCEDURES AND RESULTS

DROP TESTS	Design \#1	
TEST INFORMATION	TEST CRITERIA	
TEST CONTENTS:	MethanoI/Water Solution SAMPLE	Refer to Section II
PREPARATION:	$-18^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{F}\right)$ Freezer \#W201	- For packaging containing liquid, each packaging does not leak. - There can be no damage to the outer packaging likely to adversely affect safety during transport. Inner receptacles, inner packagings or articles must remain completely within the outer packaging and there must be no leakage of the filling substance from the inner packaging. Any discharge from a closure is slight and ceases immediately after impact with no further leakage. ($\$ 178.603)$
CONDITIONING:	$-18.1^{\circ} \mathrm{C}\left(-0.6^{\circ} \mathrm{F}\right)$	

DROP ORIENTATIONS AND TEST RESULTS		
Sample \#1: Flat on Bottom	Sample \#2: Flat on Top	*Sample \#3: Flat on Long Side
PASS: No leakage or damage.	PASS: No leakage or damage.	PASS: No leakage or damage.
*Sample \#4: Flat on Short Side	*Sample \#5: Bottom Corner	**Sample \#1: Top Corner
PASS: No leakage or damage.	PASS: No leakage. Deformation to shipper on impact.	PASS: No leakage. Deformation to shipper on impact.

*Side and corner drops were conducted to impact the manufacturer's joint.
**Flat on bottom drop sample was also used for the top corner drop.

*Side and corner drops were conducted to impact the manufacturer's joint.
**Flat on bottom drop sample was also used for the top corner drop.

*Side and corner drops were conducted to impact the manufacturer's joint.
**Flat on bottom drop sample was also used for the top corner drop.

*Side and corner drops were conducted to impact the manufacturer's joint.
**Flat on bottom drop sample was also used for the top corner drop.

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS:	Water	- There must be no leakage of the filling
SAMPLE PREPARATION:	Refer to Section II	substance from the inner receptacle, or inner packaging.
CONDITIONING:	Ambient	adversely affect transport safety or any
TEST LOAD APPLIED:	771.1 Kg (1,700.0 Lbs.) (Refer to Section IV)	strength, cause instability in stacks of packages, or cause damage to inner
TEST DURATION:	24 Hours	packagings that is likely to reduce safety in transport.
TEST EQUIPMENT:	TLS Validator Compression System	(§178.606)

STACKING TEST SET-UP \& RESULTS

Sample \#	Maximum Deflection After 24 Hours	Results
6	$0.080^{\prime \prime}$	PASS
7	$0.080 "$	PASS
$\mathbf{8}$	$0.080^{\prime \prime}$	PASS

Comments/Observations: Following the 24-hour stack test, there was no leakage of contents from the test samples and no damage likely to affect the performance of the packaging.

STACKING STABILITY TEST SET-UP \& RESULTS

CRITERIA FOR PASSING THE TEST

- In guided load tests, stacking stability must be assessed after test completion.
- Two filled packagings of the same type must be placed on the test sample.
- The stacked packages must maintain their position for one hour.
(§178.606)

For stack stability, TEN-E places the filled samples one on top of the other. The bottom sample is rotated to the top until all three samples have been subjected to stacking stability for one hour each.

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TEST LOAD APPLIED: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 771.1 Kg (1,700.0 Lbs.) (Refer to Section IV) 24 Hours TLS Validator Compression System	- There must be no leakage of the filling substance from the inner receptacle, or inner packaging. - There can be no deterioration that could adversely affect transport safety or any distortion liable to reduce the package's strength, cause instability in stacks of packages, or cause damage to inner packagings that is likely to reduce safety in transport. (§178.606)

STACKING TEST SET-UP \& RESULTS

Sample \#	Maximum Deflection After 24 Hours	Results
17	$0.067^{\prime \prime}$	PASS
18	$0.067^{\prime \prime}$	PASS
19	$0.067^{\prime \prime}$	PASS

Comments/Observations: Following the 24-hour stack test, there was no leakage of contents from the test samples and no damage likely to affect the performance of the packaging.

STACKING STABILITY TEST SET-UP \& RESULTS

Results	CRITERIA FOR PASSING THE TEST
PASS	In guided load tests, stacking stability must be assessed after test completion. - Two filled packagings of the same type must be placed on the test sample. The stacked packages must maintain their position for one hour. (§178.606)

For stack stability, TEN-E places the filled samples one on top of the other. The bottom sample is rotated to the top until all three samples have been subjected to stacking stability for one hour each.

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS:	Water	- There must be no leakage of the filling substance from the inner receptacle, or inner packaging. SAMPLE
PREPARATION:	Refer to Section II	
There can be no deterioration that could		
adversely affect transport safety or any		
distortion liable to reduce the package's		
strength, cause instability in stacks of		
packages, or cause damage to inner		
packagings that is likely to reduce safety in		
transport. \quad ($\$ 178.606)$		

STACKING TEST SET-UP \& RESULTS

Sample \#	Maximum Deflection After 24 Hours	Results
28	$0.044 "$	PASS
29	$0.044^{\prime \prime}$	PASS
30	$0.044^{\prime \prime}$	PASS

Comments/Observations: Following the 24-hour stack test, there was no leakage of contents from the test samples and no damage likely to affect the performance of the packaging.

STACKING STABILITY TEST SET-UP \& RESULTS

Results	CRITERIA FOR PASSING THE TEST
PASS	In guided load tests, stacking stability must be assessed after test completion. - Two filled packagings of the same type must be placed on the test sample. The stacked packages must maintain their position for one hour. (§178.606)

For stack stability, TEN-E places the filled samples one on top of the other. The bottom sample is rotated to the top until all three samples have been subjected to stacking stability for one hour each.

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TEST LOAD APPLIED: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 771.1 Kg (1,700.0 Lbs.) (Refer to Section IV) 24 Hours TLS Validator Compression System	- There must be no leakage of the filling substance from the inner receptacle, or inner packaging. - There can be no deterioration that could adversely affect transport safety or any distortion liable to reduce the package's strength, cause instability in stacks of packages, or cause damage to inner packagings that is likely to reduce safety in transport. (§178.606)

STACKING TEST SET-UP \& RESULTS

Sample \#	Maximum Deflection After 24 Hours	Results
39	$0.040 "$	PASS
40	$0.040 "$	PASS
41	$0.040 "$	PASS

Comments/Observations: Following the 24 -hour stack test, there was no leakage of contents from the test samples and no damage likely to affect the performance of the packaging.

STACKING STABILITY TEST SET-UP \& RESULTS

Results	CRITERIA FOR PASSING THE TEST
PASS	In guided load tests, stacking stability must be assessed after test completion. Two filled packagings of the same type must be placed on the test sample. The stacked packages must maintain their position for one hour. (§178.606)

For stack stability, TEN-E places the filled samples one on top of the other. The bottom sample is rotated to the top until all three samples have been subjected to stacking stability for one hour each.

TEST INFORMATION	TEST CRITERIA	
TEST CONTENTS:	Water	
FILL CAPACITY:	Maximum Capacity	
CLOSURE	Refer to Section II	-Packaging for which retention of liquid is a basic function must be capable of withstanding the pressure requirements without leakage. (\$173.27(c)) CONDITIONING:\quad Ambient
TEST PRESSURE:	300 kPa	
TEST DURATION:	30 Minutes	
AREA OF Through the Bottom		
PRESSURIZATION:	Regulated Water Source	
TEST EQUIPMENT:	Digital Pressure Gauge \#: 605	

HYDROSTATIC PRESSURE TEST SET-UP AND RESULTS

Sample \#	Results	Comments/Observations
$\mathbf{1}$	PASS	
$\mathbf{2}$	PASS	All three samples maintained the 300 kPa test pressure for 30 minutes without leakage.
$\mathbf{3}$	PASS	

PRESSURE DIFFE	TEST	45mm Closure
TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: FILL CAPACITY: CLOSURE APPLICATION: CONDITIONING: TEST PRESSURE: TEST DURATION: AREA OF PRESSURIZATION: TEST EQUIPMENT:	Water Maximum Capacity Refer to Section II Ambient 300 kPa 30 Minutes Through the Bottom Regulated Water Source Digital Pressure Gauge \#: 605	- Packaging for which retention of liquid is a basic function must be capable of withstanding the pressure requirements without leakage. (§173.27(c))

HYDROSTATIC PRESSURE TEST SET-UP AND RESULTS

Sample \#	Results	Comments/Observations
$\mathbf{1}$	PASS	
$\mathbf{2}$	PASS	All three samples maintained the 300 kPa test pressure for 30 minutes without leakage.
$\mathbf{3}$	PASS	

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TABLE DISPLACEMENT: TEST FREQUENCY: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 1" 3.4 Hz 1 Hour Vertical motion using L.A.B. Palletizer Vibration System	- Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. - A packaging passes the vibration test if there is no rupture or leakage from any of the packages. - No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength. (§178.608)

VIBRATION TEST SET-UP AND RESULTS

Sample \#	Results	Comments/Observations
9	PASS	
10	PASS	
11	PASS	

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TABLE DISPLACEMENT: TEST FREQUENCY: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 1" 3.4 Hz 1 Hour Vertical motion using L.A.B. Palletizer Vibration System	- Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. - A packaging passes the vibration test if there is no rupture or leakage from any of the packages. - No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength. (§178.608)

VIBRATION TEST SET-UP AND RESULTS

Sample \#	Results	Comments/Observations
20	PASS	
21	PASS	
22	PASS	

TEST INFORMATION	TEST CRITERIA
TEST CONTENTS: Water SAMPLE Refer to Section II PREPARATION: CONDITIONING: Ambient TABLE $1 "$ DISPLACEMENT: TEST FREQUENCY: 3.4 Hz TEST DURATION: 1 Hour TEST EQUIPMENT: Vertical motion using L.A.B. Palletizer Vibration System 	- Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. - A packaging passes the vibration test if there is no rupture or leakage from any of the packages. - No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength. (§178.608)

VIBRATION TEST SET-UP AND RESULTS

Sample \#	Results	Comments/Observations
31	PASS	
32	PASS	
33	PASS	

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TABLE DISPLACEMENT: TEST FREQUENCY: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 1" 3.4 Hz 1 Hour Vertical motion using L.A.B. Palletizer Vibration System	- Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. - A packaging passes the vibration test if there is no rupture or leakage from any of the packages. - No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength. (§178.608)

VIBRATION TEST SET-UP AND RESULTS

Sample \#	Results	Comments/Observations
42	PASS	
43	PASS	
44	PASS	

COBB WATER ABSORPTION TEST

TEST INFORMATION

TEST CRITERIA
NUMBER OF SAMPLES: 5
SAMPLE SIZE: $\quad 5^{\prime \prime} \times 5^{\prime \prime}$ (Minimum)
CONDITIONING:
WATER APPLIED:
$73^{\circ} \mathrm{F} / 50 \%$ RH Quality Room \#W202
100 mL / Sample
TEST DURATION:
TEST EQUIPMENT:
30 Minutes / Sample
UWE Analytical Balance
Gurley Cobb Water Absorption Fixtures

- An increase in mass greater than $155 \mathrm{~g} / \mathrm{m}^{2}$ over the 30 minute duration represents an unacceptable level of water resistance.
(§178.516)

COBB WATER ABSORPTION TEST RESULTS	
Sample \#	Water Absorbed
$\mathbf{1}$	$147.0 \mathrm{~g} / \mathrm{m}^{2}$
$\mathbf{2}$	$147.0 \mathrm{~g} / \mathrm{m}^{2}$
$\mathbf{3}$	$151.0 \mathrm{~g} / \mathrm{m}^{2}$
$\mathbf{4}$	$118.0 \mathrm{~g} / \mathrm{m}^{2}$
$\mathbf{5}$	$150.0 \mathrm{~g} / \mathrm{m}^{2}$
AVERAGE:	$\mathbf{1 4 2 . 6} \mathbf{~ g} / \mathrm{m}^{\mathbf{2}}$
RESULT	PASS

REGULATORY AND INDUSTRY STANDARD REFERENCES

REGULATORY REFERENCES						
TEST	49 CFR(1)	UN(2)	IMDG(3)	ICAO®	IATA(3)	
	October 2015 Edition	$\mathbf{1 9}^{\text {th }}$ Edition	$\mathbf{2 0 1 4}$ Edition	$\mathbf{2 0 1 5 - 2 0 1 6}$ Edition	57th Edition	
Drop:	178.603	6.1 .5 .3	6.1 .5 .3	$6 ; 4.3$	6.3 .3	
Stacking:	178.606	6.1 .5 .6	6.1 .5 .6	$6 ; 4.6$	6.3 .6	
Pressure:	$173.27(\mathrm{c})$	4.1 .1 .4 .1	4.1 .1 .4 .1	$4 ; 1.1 .6$	5.0 .2 .9	
Vibration:	178.608	---	---	$4 ; 1.1 .1$	5.0 .2 .7	
Cobb:	$178.516(\mathrm{~b})(1)$	6.1 .4 .12 .1	6.1 .4 .12 .1	$6 ; 3.1 .11 .1$	6.2 .12 .2	

(1) United States Department of Transportation Code of Federal Regulations (CFR) Title 49, Transportation, Parts 100-185
(2) The United Nations Recommendations on the Transport of Dangerous Goods - Model Regulations (UN - Orange Book)
(3) International Maritime Dangerous Goods Code (IMDG)
(4) Technical Instructions for the Safe Transport of Dangerous Good by Air (ICAO)
(3) International Air Transport Association (IATA) Dangerous Goods Regulations

INDUSTRY STANDARD REFERENCES

Drop:	ASTM® D5276:	Standard Test Method for Drop Test of Loaded Containers by Free Fall
	ASTM® D7790	Standard Test Method for the Preparation of Plastic Packagings Containing Liquids for United Nations (UN) Drop Testing
	ISO® 2248:	Packaging - Complete, Filled Transport Packages - Vertical Impact Test by Dropping
Stacking:	ASTM® D4577:	Standard Test Method for Compression Resistance of a Container Under Constant Load
	ISO® 2234:	Packaging - Complete, Filled Transport Packages - Stacking Test using Static Load
	ASTM® D7660:	Standard Guide for Conducting Internal Pressure Tests on United Nations (UN) Packagings
Vibration:	ASTM® D999:	Standard Test Method for Vibration Testing of Shipping Containers
	ISO® 2247:	Packaging - Complete, Filled Transport Packages - Vibration Test at Fixed Low Frequency
	ISO® 535:	Paper and Board - Determination of Water Absorption - Cobb Method

(6) American Society for Testing and Materials (ASTM)
(7) International Organization for Standardization (ISO)

EQUIPMENT

All inspection, measuring and test equipment that can affect product quality is calibrated and adjusted at prescribed intervals, or prior to use, and is traceable to NIST, using ANSI Z540 as an overall guide for calibration certification.

SECTION IV: MATHEMATICAL CALCULATIONS

INFORMATION USED FOR CALCULATIONS		
Overall Packaging Tare Weight (PTW):	$1,928.0$ Grams	
Overflow Capacity (OFC):		Methanol/Water
MethanoI/Water	$2,436.7$ Grams	SG: 0.950
Water	$2,565.0$ Grams	
Number of Inner Packagings (\# IP):	6	
Packing Group	2.000	
Product Specific Gravity (PSG):	1.00	
Packing Group Multiplication Factor (MF):	13.50 Inches	
Overall Height of one Package (OH):	3	
Stack Test-\# of Samples Tested Simultaneously:		

98\% OF OVERFLOW
Overflow Capacity (OFC) x 98\%

OFC	x	98%
$2,436.7$	x	$98 \%=$
$2,565.0$	x	$98 \%=$

2,388.0 Grams	Methanol/Water
2,513.7 Grams	Water

PACKAGE TEST WEIGHTS

Overall Pkg Tare Weight (PTW) + (98\% Overflow Capacity (OFC) x \# of Inner Pkg (\# IP)

PTW	+	(98\% OFC		x	\# IP)	
1,928	+	2,388.0		X	6	Methanol/Water
1,928	+	2,513.7		x	6	Water
Methanol/Water:		16.2	Kg		35.7	Lbs.
Water:		17.0	Kg		37.4	Lbs.

AUTHORIZED PACKAGE GROSS MASS CALCULATION (APGM)

Overall Pkg Tare Weight (PTW) + (Product SG (PSG) x 98\% Overflow (OFC) x \# of Inner Pkg (\# IP))

PTW	+	(PSG		x	98\% OFC	x	\# IP)
1,928	+	2		X	2,514	X	6
		32.0	Kg		70.5	Lbs.	

DROP HEIGHT					
Calculation For Product Specific Gravities Exceeding 1.2 Product Specific Gravity (PSG) x Packing Group Multiplication Factor (MF)					
PSG	x	MF			Packing Group: II
2	x	1.00		Required Drop Height	Actual Drop Height
		2.00	Meter	78.7 Inches	79 Inches

STACKING TEST MINIMUM LOAD CALCULATIONS
Number of Packages in a 3m High Stack (118 / Overall Pkg Height (OH) -1)
118 / Overall Height of one Pkg (OH) - 1

$(118$	I	$\mathrm{OH})$	-1		$\# 3 \mathrm{mH}$
118	$/$	13.50	-1		$=$

Stacking Test Load Calculation (Individual Package)
Authorized Pkg Gross Mass (APGM) x \# of Pkg in a 3m High Stack (\# 3m HS)

APGM	\times	\# 3m HS
32.0	x	7.8

550.3 Lbs.

Stacking Test Load Calculation

Samples x Authorized Pkg Gross Mass (APGM) x \# of Pkg in a 3m High Stack (\# 3m HS)

SECTION IV: MATHEMATICAL CALCULATIONS

INFORMATION USED FOR CALCULATIONS		
Overall Packaging Tare Weight (PTW):	$1,884.0$ Grams	
Overflow Capacity (OFC):		Methanol/Water
MethanoI/Water	$2,447.2$ Grams	SG: 0.950
Water	$2,576.0$ Grams	
Number of Inner Packagings (\# IP):	6	
Packing Group	2.000	
Product Specific Gravity (PSG):	1.00	
Packing Group Multiplication Factor (MF):	13.50 Inches	
Overall Height of one Package (OH):	3	
Stack Test-\# of Samples Tested Simultaneously:		

AUTHORIZED PACKAGE GROSS MASS CALCULATION (APGM)

Overall Pkg Tare Weight (PTW) + (Product SG (PSG) x 98\% Overflow (OFC) x \# of Inner Pkg (\# IP))

PTW	+	(PSG	x	98\% OFC	x	\# IP)
1,884	+	2	x	2,525	X	6
		32.1		70.7		

32.1 Kg $\quad 70.7$ Lbs.

DROP HEIGHT					
Calculation For Product Specific Gravities Exceeding 1.2 Product Specific Gravity (PSG) x Packing Group Multiplication Factor (MF)					
PSG	x	MF			Packing Group: II
2	x	1.00		Required Drop Height	Actual Drop Height
		2.00	Meter	78.7 Inches	79 Inches

STACKING TEST MINIMUM LOAD CALCULATIONS
Number of Packages in a 3m High Stack (118 / Overall Pkg Height (OH) -1)
118 / Overall Height of one Pkg (OH) - 1

$(118$	I	$\mathrm{OH})$	-1		$\# 3 \mathrm{mH}$
118	$/$	13.50	-1		$=$

Stacking Test Load Calculation (Individual Package)
Authorized Pkg Gross Mass (APGM) x \# of Pkg in a 3m High Stack (\# 3m HS)

APGM	\times	\# 3m HS
32.1	\times	7.8

552.0 Lbs.

Stacking Test Load Calculation

Samples x Authorized Pkg Gross Mass (APGM) x \# of Pkg in a 3m High Stack (\# 3m HS)

Samples	x	(APGM	x	\# 3m HS)
3	x	32.1	x	7.8
				1,656

