

4G PERIODIC RETEST
6×1 Liter Square Plastic Bottle Packaging with Two Neck Finish Options: \#1) 38-439 Neck and \#2) 45 mm Neck

TEST REPORT \#: 23-CA20057

**Insert the year packaging is manufactured

TESTING PERFORMED FOR:

PUREPAK TECHNOLOGY CORPORATION
324 South Bracken Lane Suite 3
Chandler, AZ 85224
ATTN: Michael Dodd

TESTING PERFORMED BY:

TEN-E PACKAGING SERVICES, INC.
326 North Corona Avenue
Ontario, CA 91764
Phone: 909-937-1260
Fax: 909-937-1262

TABLE OF CONTENTS

SECTION I: CERTIFICATION 3
SECTIONS II \& V: PACKAGING DESCRIPTIONS / COMPONENT DRAWINGS 4
COMPONENT INFORMATION 6
SECTION III: TEST PROCEDURES AND RESULTS 9
DROP TESTS Design \#1 9
DROP TESTS Design \#2 10
STACKING TEST 11
PRESSURE DIFFERENTIAL TEST Design \#1 12
PRESSURE DIFFERENTIAL TEST Design \#2 13
VIBRATION TEST Design \#1 14
VIBRATION TEST Design \#2 15
COBB WATER ABSORPTION TEST 16
REGULATORY AND INDUSTRY STANDARD REFERENCES 17
SECTION IV: MATHEMATICAL CALCULATIONS 18

SECTION I: CERTIFICATION

Periodic Retest of the PurePak Technology Corporation 6×1 Liter Square Plastic Bottle Packaging with Two Neck Finish Options: \#1) 38-439 Neck and \#2) 45mm Neck

TEN-E Packaging Services, Inc. is a current DOT UN Third-Party Certification Agency under §107.403 and certifies that the PurePak Technology Corporation packaging referenced above has passed the standards of the DEPARTMENT OF TRANSPORTATION'S TITLE 49 CFR; Performance Oriented Packaging Standards, Section 178. This package is also certified under IMDG, ICAO/IATA Regulations and the UN Recommendations on the Transport of Dangerous Goods. It is the responsibility of the end user to determine authorization for use under these regulations. The use of other packaging methods or components other than those documented in this report may render this certification invalid.

SUMMARY OF PERFORMANCE TESTS					
UN / DOT TEST	49 CFR REFERENCE	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$	TEST CONTENTS	TEST COMPLETED	TEST RESULTS
Drop	178.603	1.9 m	Methanol/Water Solution	April 5, 2023	PASS
Stacking	178.606	$181.4 \mathrm{Kg}-24$ Hours	Empty	April 10, 2023	PASS
Pressure	173.27	100 kPa - 30 Minutes	Water	April 10, 2023	PASS
Vibration	178.608	3.7 Hz - 1 Hour	Water	April 10, 2023	PASS
Cobb	178.516	30 Minutes	---	April 12, 2023	PASS
TEST REPORT NUMBERS: 23-CA20057, 21-CA20081					
UN MARKING: (CFR 49-178.503)			$\begin{array}{ll} \text { u } \\ n & 4 \mathrm{G} / \mathrm{Y} 13.1 / \mathrm{S} / * * \\ \mathrm{USA} /+\mathrm{CC} 8458 \end{array}$		
PACKAGING IDENTIFICATION CODE:			4G - Fiberboard Box (178.516)		
PERFORMANCE STANDARD:			Y (Packaging meets Packing Group II and III tests)		
AUTHORIZED GROSS MASS:			13.1 Kg (28.8 Lbs.)		
"S" DESIGNATION:			Denotes Inner Packagings		
YEAR OF MANUFACTURE:			${ }^{* *}$ Insert year the packaging is manufactured		
STATE AUTHORIZING THE MARK:			USA		
PACKAGING CERTIFICATION AGENCY:			(+CC) TEN-E Packaging Services, Inc. (Ontario, CA CAA \#2006030021)		
THIRD PARTY PACKAGING IDENTIFICATION:			+CC8458		
PERIODIC RETEST DATE:			April 12, 2025		

ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY THAT THE PACKAGING TESTED IS MERCHANTABLE OR FIT FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. In no event shall TEN-E Packaging Services, Inc. liability exceed the total amount paid by PurePak Technology Corporation for services rendered. In the event of future changes to the above referenced test standards, it is the responsibility of PurePak Technology Corporation to determine whether additional testing or updating of past testing is necessary to verify that the packaging we have tested remains in compliance with those standards.

MANUFACTURER:

PurePak Technology Corporation

[^0]324 South Bracken Lane Suite 3
Chandler, AZ 85224

SECTIONS II \& V: PACKAGING DESCRIPTIONS / COMPONENT DRAWINGS

For Packagings with an Established Gross Mass:

If the gross mass calculation in this report exceeds the previously established gross mass, the manufacturer may elect to maintain the current gross mass marking (e.g. the gross mass rating of the UN marking on the packaging may be less than the calculated gross mass indicated in this report) or use the newly established gross mass. In no event shall the gross mass marking on the packaging exceed the gross mass to which the packaging was tested.

For Packagings with an Established Gross Mass:

If the gross mass calculation in this report exceeds the previously established gross mass, the manufacturer may elect to maintain the current gross mass marking (e.g. the gross mass rating of the UN marking on the packaging may be less than the calculated gross mass indicated in this report) or use the newly established gross mass. In no event shall the gross mass marking on the packaging exceed the gross mass to which the packaging was tested.

COMPONENT INFORMATION

CLOSURE (QIM-317-4937-A)		DRAWING
Manufacturer: Berry Plastics Corporation, Evansville, IN		
Description:	38 mm Threaded Closure	
Quantity:	6	
Material:	Polypropylene	
Tare Weight:	10.43 Grams	
Overall Dimensions:		
- Height	$1.016 " \pm 0.015^{\prime \prime}$	
- Diameter	$1.701 " \pm 0.015^{\prime \prime}$	
Thread:		
- Type	38 mm	
- Style	439	
Thread Dimensions:		
- T	$1.481 " \pm 0.007^{\prime \prime}$	
- E	$1.389^{\prime \prime} \pm 0.007^{\prime \prime}$	
Markings (QC Audit):	2	
LINER:		
Description:	Polyethylene Foam Liner	
Tare Weight:	0.67 Grams	
Thickness:	$0.052^{\prime \prime}$	
Diameter:	1.387"	
PLASTIC BOTTLE (ZB38SQ1H)		DRAWING
Manufacturer: PurePak Technology Corporation, Chandler, AZ		
Description:	1 Liter Square Plastic Bottle	
Quantity:	6	
Material:	High Density Polyethylene	
Method of Manufacture:	Blow Molded	
Tare Weight:	85.0 Grams	
Capacity:		
- Rated	1 Liter	
- Overflow	1,101.0 Grams	
Overall Dimensions:		
- Height	$6.977^{\prime \prime}$	
- Width	3.933	
- Depth	3.933"	
Thread Dimensions:		
- T	1.453"	
- E	1.353 "	
Wall Thickness:		
- Minimum	$0.028 "$	
Markings (QC Audit):	SPI "2" HDPE Recycling Symbol 2	

CLOSURE (KDZ 2817)		DRAWING
Manufacturer: George Menshen Gmbh, Finnertrop, Germany		
Description:	45mm Tamper Evident Threaded Closure	
Quantity:	6	Tor
Material:	High Density Polyethylene	
Tare Weight:	10.56 Grams	
Overall Dimensions:		
- Height	$31.5 \mathrm{~mm} \pm 0.39 \mathrm{~mm}$	
- Diameter	51.3 mm	
Thread:		
- Type	45 mm	
Thread Dimensions:		
- T	1.791"	
- E	1.680"	
Markings (QC Audit):	2817.1 7 PE-H	
LINER:		
Description:	PTFE Plug	
Tare Weight:	0.91 Grams	
Thickness:	0.0093 "	
Diameter:	1.779"	
PLASTIC BOTTLE (ZB45SQ1H)		DRAWING
Manufacturer: PurePak Technology Corporation, Chandler, AZ		
Description:	1 Liter Square Plastic Bottle	
Quantity:	6	
Material:	High Density Polyethylene	
Method of Manufacture:	Blow Molded	
Tare Weight:	85.0 Grams \pm 4.25 Grams	
Capacity:		
- Rated	1 Liter	
- Overflow	1,104.0 Grams	
Overall Dimensions:		
- Height	$6.963^{\prime \prime} \pm 0.060^{\prime \prime}$	
- Width	3.972 " ± 0.060 "	
- Depth	3.972 " $\pm 0.060^{\prime \prime}$	
Thread Dimensions:		
- T	$1.772 \times 0.010^{\prime \prime}$	
- E	$1.644^{\prime \prime} \pm 0.010^{\prime \prime}$	
Wall Thickness:		
- Minimum	0.033 "	
Markings (QC Audit):	SPI "2" HDPE Recycling Symbol 2	

SHIPPER (P369-14401-1)

Manufacturer: Packaging Corporation of America, Phoenix, AZ	
Description:	Regular Slotted Container
Material/Flute:	Double Wall Natura Kraft Corrugated Fiberboard; C/B-Flute
Basis Weight (Outer to Inner) Lbs./MSF:	
\bullet Specification	$35 / 23 / 35 / 23 / 35$
Tare Weight:	361.0 Grams

DIMENSIONS		
	Specification Dimensions (Inside)	Measured Dimensions (Outside)
- Length	12"	12-1/2"
- Width	8-1/16"	8-3/4"
- Height	7-1/8"	8-3/8"
Board Caliper (Nominal):	0.256"	
Manufacturer's Joint:	Inside Glued, 1-3/8" Lap	
Markings (QC Audit):	u n n 4G/Y13.1/S/21 USA/+CC8458 DOT-SP 14656 ART WORK DATE 05	$24-21 \quad 12 \times 8 \quad 1 / 16 \times 7-1 / 8$
	BOX CERTIFICATE	

(A) Corrugated Manufacturer:	PACKAGING CORPORATION OF AMERICA				
(B) Structure:	Double Wall				
(C) ECT:	51 Lbs. Per Inch				
(D) Size Limit:	105"				
(E) Gross Wt. Lt:	120 Lbs.				
(F) Location:	PHOENIX, AZ				

SECTION III: TEST PROCEDURES AND RESULTS

DROP TESTS Design \#1

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: CONTENTS TEMP.: DROP HEIGHT: TEST EQUIPMENT:	nol/Water Solution (0.960 SG) to Section II ($0^{\circ} \mathrm{F}$) Freezer \#W201 $C\left(-1.0^{\circ} \mathrm{F}\right)$ eters (75.0") to Section IV) Accu Drop 160	- For packaging containing liquid, each packaging does not leak. - There can be no damage to the outer packaging likely to adversely affect safety during transport. Inner receptacles, inner packagings or articles must remain completely within the outer packaging and there must be no leakage of the filling substance from the inner packaging. - Any discharge from a closure is slight and ceases immediately after impact with no further leakage. (§178.603)
DROP ORIENTATIONS AND TEST RESULTS		
Sample \#1: Flat on Bottom	Sample \#2: Flat on Top	*Sample \#3: Flat on Long Side
PASS: No leakage or damage.	PASS: No leakage or damage.	PASS: No leakage or damage.
*Sample \#4: Flat on Short Side	*Sample \#5: Bottom Corner	**Sample \#1: Top Corner
PASS: No leakage or damage.	PASS: No leakage. Slight deformation at impact corner.	PASS: No leakage. Slight deformation at impact corner.

*Side and corner drops were conducted to impact the manufacturer's joint.
**Flat on bottom drop sample was also used for the top corner drop.
DROP TESTS Design \#2

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: CONTENTS TEMP.: DROP HEIGHT: TEST EQUIPMENT:	nol/Water Solution (0.960 SG) to Section II ($0^{\circ} \mathrm{F}$) Freezer \#W201 ${ }^{\circ} \mathrm{C}\left(-1.0^{\circ} \mathrm{F}\right)$ eters (75.0") to Section IV) Accu Drop 160	- For packaging containing liquid, each packaging does not leak. - There can be no damage to the outer packaging likely to adversely affect safety during transport. Inner receptacles, inner packagings or articles must remain completely within the outer packaging and there must be no leakage of the filling substance from the inner packaging. - Any discharge from a closure is slight and ceases immediately after impact with no further leakage. (§178.603)
DROP ORIENTATIONS AND TEST RESULTS		
Sample \#12: Flat on Bottom	Sample \#13: Flat on Top	*Sample \#14: Flat on Long Side
PASS: No leakage or damage.	PASS: No leakage or damage.	PASS: No leakage or damage.
*Sample \#15: Flat on Short Side	*Sample \#16: Bottom Corner	**Sample \#12: Top Corner
PASS: No leakage or damage.	PASS: No leakage. Slight deformation at impact corner.	PASS: No leakage. Slight deformation at impact corner.

*Side and corner drops were conducted to impact the manufacturer's joint.
${ }^{* *}$ Flat on bottom drop sample was also used for the top corner drop.

STACKING TEST

TEST INFORMATION		TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TEST LOAD APPLIED: TEST DURATION: TEST EQUIPMENT:	Empty Refer to Section II Ambient 181.4 Kg (400.0 Lbs.) (Refer to Section IV) 24 Hours Dead Load Weights	- There can be no deterioration that could adversely affect transport safety or any distortion liable to reduce the package's strength, cause instability in stacks of packages, or cause damage to inner packagings that is likely to reduce safety in transport. (§178.606)

STACKING TEST SET-UP \& RESULTS

	Sample \#	Maximum Deflection After 24 Hours	Results
	6	$0 "$	PASS

Stacking Stability: Not conducted; required only for guided load tests.
PRESSURE DIFFERENTIAL TEST Design \#1

TEST INFORMATION	TEST CRITERIA	
TEST CONTENTS:	Water	
WATER TEMPERATURE:	$\left(71.6^{\circ} \mathrm{F}\right)$	
FILL CAPACITY:	Maximum Capacity	
CLOSURE APPLICATION:	Refer to Section II	
CONDITIONING:	Ambient	Packaging for which retention of liquid is a basic function must be capable of withstanding the pressure requirements without leakage. \quad (§173.27(c))
TEST PRESSURE:	100 kPa	
TEST DURATION:	30 Minutes	
AREA OF PRESSURIZATION:	Through the Bottom	
TEST EQUIPMENT:	Regulated Water Source Digital Pressure Gauge \#: 605	

HYDROSTATIC PRESSURE TEST SET-UP AND RESULTS

| | Results |
| :---: | :---: | :---: | :---: |
| All three samples maintained the 100 kPa test pressure for 30 minutes without leakage. | |

PRESSURE DIFFERENTIAL TEST Design \#2

TEST INFORMATION	TEST CRITERIA	
TEST CONTENTS:	Water	
WATER TEMPERATURE:	$\left(71.6^{\circ} \mathrm{F}\right)$	
FILL CAPACITY:	Maximum Capacity	
CLOSURE APPLICATION:	Refer to Section II	
CONDITIONING:	Ambient	Packaging for which retention of liquid is a basic function must be capable of withstanding the pressure requirements without leakage. \quad (§173.27(c))
TEST PRESSURE:	100 kPa	
TEST DURATION:	30 Minutes	
AREA OF PRESSURIZATION:	Through the Bottom	
TEST EQUIPMENT:	Regulated Water Source Digital Pressure Gauge \#: 605	

HYDROSTATIC PRESSURE TEST SET-UP AND RESULTS

Comments/Observations	Results
All three samples maintained the 100 kPa test pressure for 30 minutes without leakage.	

VIBRATION TEST Design \#1		
TEST	INFORMATION	TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TABLE DISPLACEMENT: TEST FREQUENCY: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 1" 3.7 Hz 1 Hour Vertical motion using L.A.B. Palletizer Vibration System	- Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. - A packaging passes the vibration test if there is no rupture or leakage from any of the packages. - No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength. (§178.608)

VIBRATION TEST SET-UP AND RESULTS

	Sample \#	Results	Comments/Observations
	9	PASS	
	10	PASS	No leakage or damage.
	11	PASS	

VIBRATION TEST Design \#2		
TEST	INFORMATION	TEST CRITERIA
TEST CONTENTS: SAMPLE PREPARATION: CONDITIONING: TABLE DISPLACEMENT: TEST FREQUENCY: TEST DURATION: TEST EQUIPMENT:	Water Refer to Section II Ambient 1" 3.7 Hz 1 Hour Vertical motion using L.A.B. Palletizer Vibration System	- Immediately following the period of vibration, each package must be removed from the platform, turned on its side and observed for any evidence of leakage. - A packaging passes the vibration test if there is no rupture or leakage from any of the packages. - No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength. (§178.608)

VIBRATION TEST SET-UP AND RESULTS

	Sample \#	Results	Comments/Observations
	17	PASS	
	18	PASS	No leakage or damage.
	19	PASS	

COBB WATER ABSORPTION TEST

TEST INFORMATION		TEST CRITERIA
NUMBER OF SAMPLES:	5	
SAMPLE SIZE:	5" \times 5" (Minimum)	- An increase in mass greater than
CONDITIONING:	$73^{\circ} \mathrm{F} / 50 \%$ RH Quality Room \#W202	$155 \mathrm{~g} / \mathrm{m}^{2}$ over the 30 minute
WATER APPLIED:	100 mL / Sample	duration represents an unacceptable level of water
TEST DURATION:	30 Minutes / Sample	resistance. (§178.516)
TEST EQUIPMENT:	UWE Analytical Balance Gurley Cobb Water Absorption Fixtures	

COBB WATER ABSORPTION TEST RESULTS		
REPRESENTATIVE SET-UP PHOTO	Sample \#	Water Absorbed
	1	126.0 g/m ${ }^{2}$
-	2	$115.0 \mathrm{~g} / \mathrm{m}^{2}$
cet $4+2$	3	$105.0 \mathrm{~g} / \mathrm{m}^{2}$
5	4	$105.0 \mathrm{~g} / \mathrm{m}^{2}$
	5	$105.0 \mathrm{~g} / \mathrm{m}^{2}$
	AVERAGE:	111.2 g/m ${ }^{2}$
	RESULT	PASS

REGULATORY AND INDUSTRY STANDARD REFERENCES

REGULATORY REFERENCES					
	49 CFR ${ }^{\text {(1) }}$	UN(2)	IMDG ${ }^{3}$	ICAO®	IATA(5)
TEST	October 2022 Edition	$\begin{gathered} \hline \mathbf{2 2 n d} \\ \text { Edition } \end{gathered}$	2022 Edition	$\begin{gathered} \hline 2023-2024 \\ \text { Edition } \end{gathered}$	$\begin{gathered} 64^{\text {th }} \\ \text { Edition } \end{gathered}$
Drop:	178.603	6.1.5.3	6.1.5.3	6;4.3	6.3.3
Stacking:	178.606	6.1.5.6	6.1.5.6	6;4.6	6.3.6
Pressure:	173.27(c)	4.1.1.4.1	---	4;1.1.6	5.0.2.9
Vibration:	178.608	---	---	$\begin{gathered} 4 ; 1.1 .1 \& \\ 4 ; 1.1 .4 \\ \hline \end{gathered}$	5.0.2.7
Cobb:	178.516(b)(1)	6.1.4.12.1	6.1.4.12.1	6;3.1.11.1	6.2.12.2

(1) United States Department of Transportation Code of Federal Regulations (CFR) Title 49, Transportation, Parts 100-185
(2) The United Nations Recommendations on the Transport of Dangerous Goods - Model Regulations (UN - Orange Book)
(3) International Maritime Dangerous Goods Code (IMDG)
(4) Technical Instructions for the Safe Transport of Dangerous Good by Air (ICAO)
(5) International Air Transport Association (IATA) Dangerous Goods Regulations

INDUSTRY STANDARD REFERENCES

Drop:	ASTM® D5276:	Standard Test Method for Drop Test of Loaded Containers by Free Fall
	ASTM® D7790	Standard Test Method for the Preparation of Plastic Packagings Containing Liquids for United Nations (UN) Drop Testing
	ISO® 2248:	Packaging - Complete, Filled Transport Packages - Vertical Impact Test by Dropping
Stacking:	ASTM® D8409	Standard Guide for Conducting Stacking Tests on UN Packagings Using Guided or Unguided Loads
	ASTM® D4577:	Standard Test Method for Compression Resistance of a Container Under Constant Load
	ISO(2234:	Packaging - Complete, Filled Transport Packages - Stacking Test using Static Load
Hydrostatic Pressure:	ASTM® D7660:	Standard Guide for Conducting Internal Pressure Tests on United Nations (UN) Packagings
Vibration:	ASTM® D999:	Standard Test Method for Vibration Testing of Shipping Containers
	ISO® 2247:	Packaging - Complete, Filled Transport Packages - Vibration Test at Fixed Low Frequency
Cobb:	ISOP 535:	Paper and Board - Determination of Water Absorption - Cobb Method

© American Society for Testing and Materials (ASTM)
(7) International Organization for Standardization (ISO)

EQUIPMENT

All inspection, measuring and test equipment that can affect product quality is calibrated and adjusted at prescribed intervals, or prior to use, and is traceable to NIST, using ANSI Z540 as an overall guide for calibration certification.

This test report shall not be reproduced, except in full and unedited, without prior written approval from TEN-E Packaging Services, Inc.

SECTION IV: MATHEMATICAL CALCULATIONS

Design \#1

PACKAGE TEST WEIGHTS
Overall Pkg Tare Weight (PTW) + (98\% Overflow Capacity (OFC) x \# of Inner Pkg (\# IP)

PTW	+	(98\% OFC		x	\# IP)	
924.0	+	1,016.3		x	6	Methanol/Water
924.0	+	1,079.0		x	6	Water
Methanol/Water:		7.0	Kg		15.4	Lbs.
Water:		7.3	Kg		16.0	Lbs.

AUTHORIZED PACKAGE GROSS MASS CALCULATION (APGM)

Overall Pkg Tare Weight (PTW) + (Product SG (PSG) x 98\% Overflow (OFC) x \# of Inner Pkg (\# IP))

DROP HEIGHT
Calculation For Product Specific Gravities Exceeding 1.2
Product Specific Gravity (PSG) x Packing Group Multiplication Factor (MF)

Meter
Required Drop Height
74.8 Inches

Packing Group: II

Actual Drop Height
75 Inches

STACKING TEST MINIMUM LOAD CALCULATIONS
Number of Packages in a 3 m High Stack (118.2 / Overall Pkg Height (OH) -1)
118.2 / Overall Height of one Pkg (OH) - 1
\qquad

I

$\begin{array}{llllll}118.2 & 8.38 & -1 & = & 13.2\end{array}$
Stacking Test Load Calculation (Individual Package)
Authorized Pkg Gross Mass (APGM) x \# of Pkg in a 3m High Stack (\# 3m HS)

APGM	\times	\#3m HS
13.2	13.2	

174.3 Kg
384.3 Lbs.

Design \#2

INFORMATION USED FOR CALCULATIONS

Overall Packaging Tare Weight (PTW):	931.0 Grams	
Overflow Capacity (OFC):		MethanoI/Water
\quad MethanolWater	$1,063.0$ Grams	SG: 0.960
Water	$1,104.0$ Grams	
Number of Inner Packagings (\# IP):	6	
Packing Group	II	
Product Specific Gravity (PSG):	1.900	
Packing Group Multiplication Factor (MF):	1.00	
Overall Height of one Package (OH):	8.38 Inches	
Stack Test\# of Samples Tested Simultaneously:	1	

98\% OF OVERFLOW				
Overflow Capacity (OFC) x 98\%				
OFC	x	98\%		
1,063.0	x	98\% =	1,041.8 Grams	Methanol/Water
1,104.0	x	98\% =	1,082.0 Grams	Water

PACKAGE TEST WEIGHTS

Overall Pkg Tare Weight (PTW) + (98\% Overflow Capacity (OFC) x \# of Inner Pkg (\# IP)

PTW	+ (98\% OFC		x	\# IP)	
931.0	+ 1,041.8		x	6	Methanol/Water
931.0	+ 1,082.0		x	6	Water
Methanol/Water:	7.1	Kg		15.6	Lbs.
Water:	7.4	Kg		16.3	Lbs.

AUTHORIZED PACKAGE GROSS MASS CALCULATION (APGM)

Overall Pkg Tare Weight (PTW) + (Product SG (PSG) x 98\% Overflow (OFC) x \# of Inner Pkg (\# IP))

PTW	+	(PSG		x	98\% OFC	x	\# IP)
931.0	+	1.9		X	1,082.0	X	6
		13.2	Kg		29.1	Lbs.	

DROP HEIGHT
Calculation For Product Specific Gravities Exceeding 1.2
Product Specific Gravity (PSG) x Packing Group Multiplication Factor (MF)

Meter
Required Drop Height
74.8 Inches

Packing Group: II

Actual Drop Height
75 Inches

STACKING TEST MINIMUM LOAD CALCULATIONS
Number of Packages in a 3 m High Stack (118.2 / Overall Pkg Height (OH) -1)
118.2 / Overall Height of one Pkg (OH) - 1
\qquad

I

$\begin{array}{ll}= & \# 3 \mathrm{mHS} \\ = & 13.2\end{array}$
$\begin{array}{llllll}118.2 & 8.38 & -1 & = & 13.2\end{array}$
Stacking Test Load Calculation (Individual Package)
Authorized Pkg Gross Mass (APGM) x \# of Pkg in a 3m High Stack (\# 3m HS)

APGM	\times	\#3m HS
13.2	13.2	

174.3 Kg
384.3 Lbs.

[^0]: Matthew C. Anderson
 Project Manager
 TEN-E Packaging Services, Inc

